Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — физика
Вариант № 4283
1.  
i

Аби­ту­ри­ент про­вел поиск ин­фор­ма­ции в сети Ин­тер­нет о наи­бо­лее ско­рост­ных лиф­тах в мире. Ре­зуль­та­ты по­ис­ка пред­став­ле­ны в таб­ли­це.

 

На­зва­ние не­бо­скрёбаМак­си­маль­ная ско­рость

лифта

1Джон Хэн­кок Центр917 см/с
2Бурдж – Ха­ли­фа36 км/ч
3Taipei 10160,6 км/ч
4Сан­шайн-606,09 · 10 2 м/мин
5Yokohama Landmark Tower12,5 м/с

 

Самый ско­рост­ной лифт на­хо­дит­ся в не­бо­скре­бе, ука­зан­ном в стро­ке таб­ли­цы, номер ко­то­рой:

1) 1
2) 2
3) 3
4) 4
5) 5
2.  
i

Уста­но­ви­те со­от­вет­ствие между фи­зи­че­ски­ми ве­ли­чи­на­ми и учёными-фи­зи­ка­ми, в честь ко­то­рых на­зва­ны еди­ни­цы этих ве­ли­чин.

 

А. На­пря­же­ние
Б. Сила тока
В. Энер­гия
1) Джо­уль
2) Ампер
3) Воль­та
1) А1 Б2 В3
2) А1 Б3 В2
3) А2 Б1 В3
4) А3 Б2 В1
5) А3 Б1 В3
3.  
i

По па­рал­лель­ным участ­кам со­сед­них же­лез­но­до­рож­ных путей в одном на­прав­ле­нии рав­но­мер­но дви­га­лись два по­ез­да: пас­са­жир­ский и то­вар­ный. Мо­дуль ско­ро­сти пас­са­жир­ско­го по­ез­да  v _1 = 44 дробь: чис­ли­тель: км, зна­ме­на­тель: ч конец дроби , то­вар­но­го –  v _2 = 80 дробь: чис­ли­тель: км, зна­ме­на­тель: ч конец дроби . Если длина то­вар­но­го по­ез­да L = 0,60км, то пас­са­жир, си­дя­щий у окна в ва­го­не пас­са­жир­ско­го по­ез­да, за­ме­тил, что он про­ехал мимо то­вар­но­го по­ез­да за про­ме­жу­ток вре­ме­ни \Delta t, рав­ный:

1) 17 с
2) 27 с
3) 38 с
4) 49 с
5) 60 с
4.  
i

Аб­со­лют­ное удли­не­ние \Delta l_1 пер­вой пру­жи­ны в два раза боль­ше аб­со­лют­но­го удли­не­ния \Delta l_2 вто­рой пру­жи­ны. Если по­тен­ци­аль­ные энер­гии упру­гой де­фор­ма­ции этих пру­жин равны (EП1 = EП2), то от­но­ше­ние жест­ко­сти вто­рой пру­жи­ны к жест­ко­сти пер­вой пру­жи­ны  дробь: чис­ли­тель: k_2, зна­ме­на­тель: k_1 конец дроби равно:

1) 1,0
2) \sqrt{2}
3) 1,7
4) 2,0
5) 4,0
5.  
i

Ка­мень, бро­шен­ный го­ри­зон­таль­но с не­ко­то­рой вы­со­ты, упал на по­верх­ность Земли через про­ме­жу­ток вре­ме­ни Δt  =  2 с от мо­мен­та брос­ка. Если мо­дуль на­чаль­ной ско­ро­сти υ0 = 15 м/с, то мо­дуль его на­чаль­ной ско­ро­сти υ в мо­мент па­де­ния был равен:

1) 20 м/с
2) 25 м/с
3) 30 м/с
4) 32 м/с
5) 35 м/с
6.  
i

В двух вер­ти­каль­ных со­об­ща­ю­щих­ся со­су­дах на­хо­дит­ся ртуть (\rho1 = 13,6 г/см3 ). По­верх ртути в один сосуд на­ли­ли слой воды (\rho2 = 1,00 г/см3 ) вы­со­той H = 19 см. Раз­ность \Delta h уров­ней ртути в со­су­дах равна:

1) 10,5 мм
2) 12,2 мм
3) 14,0 мм
4) 16,3 мм
5) 20,2 мм
7.  
i

Если аб­со­лют­ная тем­пе­ра­ту­ра тела T = 280 К, то его тем­пе­ра­ту­ра t по шкале Цель­сия равна:

1)  минус 17 гра­ду­сов C
2)  минус 7.0 гра­ду­сов C
3) 7.0 гра­ду­сов C
4) 17 гра­ду­сов C
5) 27 гра­ду­сов C
8.  
i

При изо­хор­ном на­гре­ва­нии иде­аль­но­го газа, ко­ли­че­ство ве­ще­ства ко­то­ро­го по­сто­ян­но, дав­ле­ние газа из­ме­ни­лось от p_1 = 120кПа до p_2 = 160кПа. Если на­чаль­ная тем­пе­ра­ту­ра газа T_1 = 300К, то ко­неч­ная тем­пе­ра­ту­ра T2 газа равна:

1) 330 К
2) 350 К
3) 390 К
4) 400 К
5) 420 К
9.  
i

В не­ко­то­ром про­цес­се тер­мо­ди­на­ми­че­ская си­сте­ма по­лу­чи­ла ко­ли­че­ство теп­ло­ты Q = 45 Дж. Если при этом внеш­ние силы со­вер­ши­ли над си­сте­мой ра­бо­ту А = 10 Дж, то внут­рен­няя энер­гия си­сте­мы уве­ли­чи­лась на \Delta U:

1) 10 Дж
2) 35 Дж
3) 45 Дж
4) 55 Дж
5) 90 Дж
10.  
i

Сила тока в сол­неч­ной ба­та­рее из­ме­ря­ет­ся в:

1) ват­тах
2) воль­тах
3) ам­пе­рах
4) ватт-часах
5) элек­трон-воль­тах
11.  
i

На ри­сун­ке изоб­ра­же­ны линии на­пряжённо­сти \vecЕ и две эк­ви­по­тен­ци­аль­ные по­верх­но­сти ab и mn од­но­род­но­го элек­тро­ста­ти­че­ско­го поля. Для раз­но­сти по­тен­ци­а­лов между точ­ка­ми поля пра­виль­ное со­от­но­ше­ние обо­зна­че­но циф­рой:

1) \varphi_1 минус \varphi_2 мень­ше \varphi_1 минус \varphi_3= \varphi_1 минус \varphi_4
2) \varphi_1 минус \varphi_2 =\varphi_1 минус \varphi_3 мень­ше \varphi_1 минус \varphi_4
3) \varphi_1 минус \varphi_2 мень­ше \varphi_1 минус \varphi_3 мень­ше \varphi_1 минус \varphi_4
4) \varphi_1 минус \varphi_2 боль­ше \varphi_1 минус \varphi_3 боль­ше \varphi_1 минус \varphi_4
5) \varphi_1 минус \varphi_2 =\varphi_1 минус \varphi_3 боль­ше \varphi_1 минус \varphi_4
12.  
i

Пять ре­зи­сто­ров, со­про­тив­ле­ния ко­то­рых R1 = 120 Ом, R2 = 30 Ом, R3 = 15 Ом, R4 = 60 Ом и R5 = 24 Ом, со­еди­не­ны па­рал­лель­но и под­клю­че­ны к ис­точ­ни­ку по­сто­ян­но­го тока. Если сила тока в ис­точ­ни­ке I = 6 А, то в ре­зи­сто­ре R1 сила тока I1 равна:

1) 1,6 А
2) 1,4 А
3) 0,6 А
4) 0,3 А
5) 0,1 А
13.  
i

Че­ты­ре длин­ных пря­мо­ли­ней­ных про­вод­ни­ка, сила тока в ко­то­рых оди­на­ко­ва, рас­по­ло­же­ны в воз­ду­хе па­рал­лель­но друг другу так, что цен­тры их по­пе­реч­ных се­че­ний на­хо­дят­ся в вер­ши­нах квад­ра­та (см.рис. 1). На­прав­ле­ние век­то­ра ин­дук­ции \vecB ре­зуль­ти­ру­ю­ще­го маг­нит­но­го поля, со­здан­но­го этими то­ка­ми в точке O, на ри­сун­ке 2 обо­зна­че­но циф­рой:

Рис. 1

Рис. 2

1) 1
2) 2
3) 3
4) 4
5) 5
14.  
i

На ри­сун­ке 1 изоб­ра­жен уча­сток элек­три­че­ской цепи, на ко­то­ром па­рал­лель­но ка­туш­ке ин­дук­тив­но­сти L вклю­че­на лам­поч­ка Л. Гра­фик за­ви­си­мо­сти силы тока I в ка­туш­ке ин­дук­тив­но­сти от вре­ме­ни t по­ка­зан на ри­сун­ке 2. Лам­поч­ка будет све­тить на­и­ме­нее ярко в те­че­ние ин­тер­ва­ла вре­ме­ни:

Рис. 1

Рис. 2

1) OA
2) AB
3) BC
4) CD
5) DE
15.  
i

Груз, на­хо­дя­щий­ся на глад­кой го­ри­зон­таль­ной по­верх­но­сти и при­креплённый к не­ве­со­мой пру­жи­не жёстко­стью k  =  20 Н/м (см. рис.), со­вер­ша­ет гар­мо­ни­че­ские ко­ле­ба­ния с ам­пли­ту­дой А = 10 см. Если мо­дуль мак­си­маль­ной ско­ро­сти груза υmax = 2,0 м/с то масса m груза равна:

1) 20 г
2) 30 г
3) 40 г
4) 50 г
5) 60 г
16.  
i

При нор­маль­ном па­де­нии света с дли­ной волны \lambda = 455 нм на ди­фрак­ци­он­ную решётку с пе­ри­о­дом d = 3,64 мкм по­ря­док m ди­фрак­ци­он­но­го мак­си­му­ма, на­блю­да­е­мо­го под углом \theta = 30° к нор­ма­ли, равен:

1) 1
2) 2
3) 3
4) 4
5) 5
17.  
i

На диа­грам­ме по­ка­за­ны пе­ре­хо­ды атома во­до­ро­да между раз­лич­ны­ми энер­ге­ти­че­ски­ми со­сто­я­ни­я­ми, со­про­вож­да­ю­щи­е­ся либо из­лу­че­ни­ем, либо по­гло­ще­ни­ем фо­то­нов. По­гло­ще­ние фо­то­на с наи­боль­шей ча­сто­той \nu_max про­ис­хо­дит при пе­ре­хо­де, обо­зна­чен­ном циф­рой:

1) 1
2) 2
3) 3
4) 4
5) 5
18.  
i

Если удель­ная энер­гия связи нук­ло­нов в ядре изо­то­па же­ле­за _26 в сте­пе­ни левая круг­лая скоб­ка 56 пра­вая круг­лая скоб­ка Fe со­став­ля­ет ε = 8,79 МэВ/нук­лон, то энер­гия связи Eсв этого ядра равна:

1) 136 МэВ
2) 228 МэВ
3) 264 МэВ
4) 492 МэВ
5) 652 МэВ
19.  
i

Ма­те­ри­аль­ная точка мас­сой m = 2,5 кг дви­жет­ся вдоль оси Ox. Гра­фик за­ви­си­мо­сти про­ек­ции ско­ро­сти υx ма­те­ри­аль­ной точки на эту ось от вре­ме­ни t пред­став­лен на ри­сун­ке. В мо­мент вре­ме­ни t = 3 c мо­дуль ре­зуль­ти­ру­ю­щей всех сил F, при­ло­жен­ных к ма­те­ри­аль­ной точке, равен ... H.

20.  
i

На го­ри­зон­таль­ном полу лифта, дви­га­ю­ще­го­ся с на­прав­лен­ным вниз уско­ре­ни­ем, стоит че­мо­дан мас­сой m = 30кг, пло­щадь ос­но­ва­ния ко­то­ро­го S = 0,080м в квад­ра­те . Если дав­ле­ние, ока­зы­ва­е­мое че­мо­да­ном на пол, p = 2,4кПа, то мо­дуль уско­ре­ния a лифта равен ...  дробь: чис­ли­тель: дм, зна­ме­на­тель: с в квад­ра­те конец дроби .

21.  
i

На дне вер­ти­каль­но­го ци­лин­дри­че­ско­го со­су­да, ра­ди­ус ос­но­ва­ния ко­то­ро­го R = 10 см, не­плот­но при­ле­гая ко дну, лежит кубик. Если масса ку­би­ка m= 201 г, а длина его сто­ро­ны a = 10 см, то для того, чтобы кубик начал пла­вать, в сосуд нужно на­лить ми­ни­маль­ный объем Vmin воды (ρв = 1,00 г/см3), рав­ный ... см3.

22.  
i

На глад­кой го­ри­зон­таль­ной по­верх­но­сти лежит бру­сок мас­сой m_1 = 60г, при­креп­лен­ный к стене не­ве­со­мой пру­жи­ной жест­ко­стью k = 46 дробь: чис­ли­тель: Н, зна­ме­на­тель: м конец дроби (см.рис.). Пла­сти­ли­но­вый шарик мас­сой m_2 = 60г, ле­тя­щий го­ри­зон­таль­но вдоль оси пру­жи­ны со ско­ро­стью, мо­дуль ко­то­рой  v = 2,0 дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби , по­па­да­ет в бру­сок и при­ли­па­ет к нему. Мак­си­маль­ное сжа­тие пру­жи­ны |\Delta l| равно ... мм.

23.  
i

В бал­ло­не на­хо­дит­ся иде­аль­ный газ мас­сой m1 = 1,9 кг. После того как из бал­ло­на вы­пу­сти­ли не­ко­то­рую массу газа и по­ни­зи­ли аб­со­лют­ную тем­пе­ра­ту­ру остав­ше­го­ся газа так, что она стала на α = 20,0 % мень­ше пер­во­на­чаль­ной, дав­ле­ние газа в бал­ло­не умень­ши­лось на β = 40,0 %. Масса m газа вы­пу­щен­но­го из бал­ло­на равна ... г.

24.  
i

На ри­сун­ке при­ведён гра­фик за­ви­си­мо­сти тем­пе­ра­ту­ры t тела (c  =  1000 Дж/(кг · °C)) от вре­ме­ни \tau. Если к телу еже­се­кунд­но под­во­ди­лось ко­ли­че­ство теп­ло­ты |Q0| = 1,5\ Дж, то масса m тела равна ... г.

25.  
i

На ри­сун­ке изоб­ра­жен гра­фик за­ви­си­мо­сти тем­пе­ра­ту­ры Tх хо­ло­диль­ни­ка теп­ло­вой ма­ши­ны, ра­бо­та­ю­щей по циклу Карно, от вре­ме­ни τ. Если тем­пе­ра­ту­ра на­гре­ва­те­ля теп­ло­вой ма­ши­ны Tн = 287 °C, то мак­си­маль­ный ко­эф­фи­ци­ент по­лез­но­го дей­ствия ηmax ма­ши­ны был равен ... %.

26.  
i

На то­чеч­ный заряд q, на­хо­дя­щий­ся в элек­тро­ста­ти­че­ском поле, со­здан­ном за­ря­да­ми q1 и q2, дей­ству­ет сила \vecF (см.рис.). Если заряд q1 = -24 нКл, то мо­дуль за­ря­да q2 равен ...нКл.

27.  
i

Ак­ку­му­ля­тор, ЭДС ко­то­ро­го ε = 1,5 В и внут­рен­нее со­про­тив­ле­ние r = 0,1 Ом, за­мкнут ни­хро­мо­вым (с  =  0,46 кДж/(кг · К) про­вод­ни­ком мас­сой m = 36,6 г. Если на на­гре­ва­ние про­вод­ни­ка рас­хо­ду­ет­ся α = 60% вы­де­ля­е­мой в про­вод­ни­ке энер­гии, то мак­си­маль­но воз­мож­ное из­ме­не­ние тем­пе­ра­ту­ры ΔTmax про­вод­ни­ка за про­ме­жу­ток вре­ме­ни Δt  =  1 мин равно ... К.

28.  
i

В од­но­род­ном маг­нит­ном поле, мо­дуль ин­дук­ции ко­то­ро­го B = 0,10 Тл, на двух оди­на­ко­вых не­ве­со­мых пру­жи­нах жёстко­стью k = 50 Н/м под­ве­шен в го­ри­зон­таль­ном по­ло­же­нии пря­мой од­но­род­ный про­вод­ник дли­ной L = 1,5 м (см. рис.). Линии маг­нит­ной ин­дук­ции го­ри­зон­таль­ны и пер­пен­ди­ку­ляр­ны про­вод­ни­ку. Если при от­сут­ствии тока в про­вод­ни­ке длина каж­дой пру­жи­ны была х1= 30 см, то после того, как по про­вод­ни­ку пошёл ток I = 20 А, длина каж­дой пру­жи­ны х2 в рав­но­вес­ном по­ло­же­нии стала рав­ной ... см.

29.  
i

В иде­аль­ном LC-кон­ту­ре про­ис­хо­дят сво­бод­ные элек­тро­маг­нит­ные ко­ле­ба­ния. Мак­си­маль­ное на­пря­же­ние на кон­ден­са­то­ре кон­ту­ра U0 = 3,0 В, мак­си­маль­ная сила тока в ка­туш­ке I0 = 1,2 мА. Если ин­дук­тив­ность ка­туш­ки L = 75 мГн, то ёмкость C кон­ден­са­то­ра равна … нФ.

30.  
i

На тон­кую стек­лян­ную линзу, на­хо­дя­щу­ю­ся в воз­ду­хе за шир­мой, па­да­ют два све­то­вых луча (см.рис.). Если луч А рас­про­стра­ня­ет­ся вдоль глав­ной оп­ти­че­ской оси линзы, а луч В − так, как по­ка­за­но на ри­сун­ке, то фо­кус­ное рас­сто­я­ние F линзы равно ... см.